Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 125
Filtrar
1.
Am J Cancer Res ; 14(4): 1523-1544, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38726263

RESUMO

Although sorafenib is the first-line therapeutic agent for advanced hepatocellular carcinoma (HCC), the development of drug resistance in HCC cells limits its clinical efficacy. However, the key factors involved in mediating the sorafenib resistance of HCC cells and the underlying mechanisms have not been elucidated. In this study, we generated sorafenib-resistant HCC cell lines, and our data demonstrate that HLA-F locus-adjacent transcript 10 (FAT10), a ubiquitin-like protein, is markedly upregulated in sorafenib-resistant HCC cells and that reducing the expression of FAT10 in sorafenib-resistant HCC cells increases sensitivity to sorafenib. Mechanistically, FAT10 stabilizes the expression of the PTEN-specific E3 ubiquitin ligase NEDD4 that causes downregulation of PTEN, thereby inducing AKT-mediated autophagy and promoting the resistance of HCC cells to sorafenib. Moreover, we screened the small molecule Compound 7695-0983, which increases the sensitivity of sorafenib-resistant HCC cells to sorafenib by inhibiting the expression of FAT10 to inhibit NEDD4-PTEN/AKT axis-mediated autophagy. Collectively, our preclinical findings identify FAT10 as a key factor in the sorafenib resistance of HCC cells and elucidate its underlying mechanism. This study provides new mechanistic insight for the exploitation of novel sorafenib-based tyrosine kinase inhibitor (TKI)-targeted drugs for treating advanced HCC.

2.
World J Microbiol Biotechnol ; 40(5): 160, 2024 Apr 12.
Artigo em Inglês | MEDLINE | ID: mdl-38607448

RESUMO

ß-Carotene is an orange fat-soluble compound, which has been widely used in fields such as food, medicine and cosmetics owing to its anticancer, antioxidant and cardiovascular disease prevention properties. Currently, natural ß-carotene is mainly extracted from plants and algae, which cannot meet the growing market demand, while chemical synthesis of ß-carotene cannot satisfy the pursuit for natural products of consumers. The ß-carotene production through microbial fermentation has become a promising alternative owing to its high efficiency and environmental friendliness. With the rapid development of synthetic biology and in-depth study on the synthesis pathway of ß-carotene, microbial fermentation has shown promising applications in the ß-carotene synthesis. Accordingly, this review aims to summarize the research progress and strategies of natural carotenoid producing strain and metabolic engineering strategies in the heterologous synthesis of ß-carotene by engineered microorganisms. Moreover, it also summarizes the adoption of inexpensive carbon sources to synthesize ß-carotene as well as proposes new strategies that can further improve the ß-carotene production.


Assuntos
Produtos Biológicos , beta Caroteno , Fermentação , Carotenoides , Antioxidantes
3.
Transl Cancer Res ; 13(3): 1268-1289, 2024 Mar 31.
Artigo em Inglês | MEDLINE | ID: mdl-38617510

RESUMO

Background: Hepatocellular carcinoma (HCC) is a highly heterogeneous malignancy with poor overall prognosis. Cuproptosis, a recently proposed mode of copper-dependent cell death, plays a critical role in the malignant progression of various tumors; however, the expression and prognostic value of cuproptosis-related regulatory genes in HCC remain unclear. Methods: Genomic, genetic, and expression profiles of ten key cuproptosis-related regulatory genes were analyzed using The Cancer Genome Atlas Liver Hepatocellular Carcinoma (TCGA-LIHC) dataset and protein expression data from the Human Protein Atlas (HPA) database. Unsupervised clustering of HCC patients based on these ten key cuproptosis-related regulatory genes was used to identify different HCC subtypes and analyze the differences in clinical and immune characteristics among subtypes. Subsequently, univariate Cox and least absolute shrinkage and selection operator (LASSO) Cox analyses were used to establish a cuproptosis-related prognostic signature, and the accuracy of prognostic signature prediction was internally validated by Kaplan-Meier survival analysis and time-dependent receiver operating characteristic curve in TCGA training and testing cohorts. The prognostic signature was externally validated using TCGA-LIHC entire cohort and International Cancer Genome Consortium Liver Cancer (ICGC-LIRI) cohorts. Finally, the expression landscape of cuproptosis-related regulatory genes in prognostic signature was explored by quantitative real-time polymerase chain reaction (qRT-PCR), western blotting and immunohistochemistry (IHC) experiments. Results: Ten cuproptosis-related genes were differentially expressed in normal and HCC tissues. Unsupervised clustering identified two subtypes and HCC patients with these two subtypes had different clinical prognoses and immune characteristics, as well as different degrees of response to immunotherapy. Lipoyltransferase 1 (LIPT1), dihydrolipoamide s-acetyltransferase (DLAT), and cyclin dependent kinase inhibitor 2A (CDKN2A) were selected to construct a prognostic signature, which significantly distinguished HCC patients with different survival periods in the TCGA training and testing cohorts and was well validated in both the TCGA-LIHC entire cohort and ICGC-LIRI cohort. The risk score of the prognostic signature was confirmed to be an independent prognostic factor, and nomograms were generated to effectively predict the probability of HCC patient survival. The qRT-PCR, western blotting and IHC results also revealed a significant imbalance in the expression of these cuproptosis-related genes in HCC. Conclusions: The classification and prognostic signature based on cuproptosis-related regulatory genes helps to explain the heterogeneity of HCC, which may contribute to the individualized treatment of patients with the disease.

4.
Small ; : e2400335, 2024 Apr 29.
Artigo em Inglês | MEDLINE | ID: mdl-38682593

RESUMO

Aluminum batteries (ABs) are identified as one of the most promising candidates for the next generation of large-scale energy storage elements because of their efficient three-electron reaction. Compared to ionic electrolytes, aqueous aluminum-ion batteries (AAIBs) are considered safer, less costly, and more environmentally friendly. However, considerable cycling performance is a key issue limiting the development of AAIBs. Stable, efficient, and electrolyte-friendly cathodes are most desirable for AAIBs. Herein, a rod-shaped defect-rich α-MnO2 is designed as a cathode, which is capable to deliver high performance with stable cycling for 180 cycles at 500 mA g-1 and maintains a discharge specific capacity of ≈100 mAh g-1. In addition, the infiltrability simulation is effectively utilized to corroborate the rapid electrochemical reaction brought about by the defective mechanism. With the formation of oxygen vacancies, the dual embedding of protons and metal ions is activated. This work provides a brand-new design for the development and characterization of cathodes for AAIBs.

5.
Transplantation ; 2024 Mar 12.
Artigo em Inglês | MEDLINE | ID: mdl-38467594

RESUMO

Transplantation serves as the cornerstone of treatment for patients with end-stage organ disease. The prevalence of complications, such as allograft rejection, infection, and malignancies, underscores the need to dissect the complex interactions of the immune system at the single-cell level. In this review, we discuss studies using mass cytometry or cytometry by time-of-flight, a cutting-edge technology enabling the characterization of immune populations and cell-to-cell interactions in granular detail. We review the application of mass cytometry in human and experimental animal studies in the context of transplantation, uncovering invaluable contributions of the tool to understanding rejection and other transplant-related complications. We discuss recent innovations that have the potential to streamline and standardize mass cytometry workflows for application to multisite clinical trials. Additionally, we introduce imaging mass cytometry, a technique that couples the power of mass cytometry with spatial context, thereby mapping cellular interactions within tissue microenvironments. The synergistic integration of mass cytometry and imaging mass cytometry data with other omics data sets and high-dimensional data platforms to further define immune dynamics is discussed. In conclusion, mass cytometry technologies, when integrated with other tools and data, shed light on the intricate landscape of the immune response in transplantation. This approach holds significant potential for enhancing patient outcomes by advancing our understanding and facilitating the development of new diagnostics and therapeutics.

6.
J Colloid Interface Sci ; 665: 181-187, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38522158

RESUMO

Carbonyl or imine-based compounds have received a great deal of attention due to their high specific capacity and designability as cathodes for aqueous rechargeable organo-aluminum batteries. However, the inherent low conductivity and high solubility of carbonyl and imine-based compounds severely affect the cycling stability of aluminum batteries. Therefore, it is urgent to find an organic cathodes material with low solubility and good cycling performance. In this work, dibenzo[a,c]dibenzo[5,6:7,8]quinoxalino[2,3-i]phenazine-10,21-dione (DDQP) were synthesized by simple dehydration condensation to form new imine covalent bonds, which led to the synthesis of imine-conjugated backbone structures with carbonyl, extended π-conjugation planes, and increased active sites, resulting in increased specific capacities. Its storage mechanism with Al(OTF)2+ has also been confirmed. This monovalent ion usually possesses a lower coulombic interaction, which leads to a reduced solubility of DDQP during redox processes and improves its cyclic stability. The specific capacity of DDQP is 252.22 mAh/g at a current density of 400 mA g-1. After cycling, the discharge specific capacity remains at 219 mAh/g. Surprisingly, the conductivity of the battery also is improved by this structure of multiple active sites. And it can be further confirmed by theoretical calculations that the synthesis of DDQP realigns the arrangement of the electron cloud, enhances the electron affinity, and reduces the energy gap. This study provides a new reference for improving the performance of aqueous organic aluminum batteries.

7.
ACS Appl Mater Interfaces ; 16(8): 10061-10069, 2024 Feb 28.
Artigo em Inglês | MEDLINE | ID: mdl-38372285

RESUMO

A dual-salt electrolyte with 5 M Al(OTF)3 and 0.5 M LiOTF is proposed for aqueous aluminum batteries, which can effectively prevent the corrosion caused by the hydrogen evolution reaction. With the addition of LiOTF in the electrolyte, the solvation phenomenon has changed with the coordination mode of Al3+ conversion from an all octahedral structure to a mixed octahedral and tetrahedral structure. This change can reduce the hydrogen bond between water molecules, which will minimize the occurrence of hydrogen evolution reactions. Moreover, the new electrolyte improves the cycle life of the battery. With MnO as the cathode, 2.1 V high charging platform and 1.5 V high discharge platform can be obtained. The electrochemical stability window (ESW) has been improved to 3.8 V. The first cycle capacity is up to 437 mAh g-1, which can be maintained at 103 mAh g-1 after 100 cycles. This work provides solutions for the future development of electrolyte for aqueous aluminum batteries.

8.
Heliyon ; 10(2): e24103, 2024 Jan 30.
Artigo em Inglês | MEDLINE | ID: mdl-38293536

RESUMO

Inflammatory macrophages play a crucial role in atherosclerosis development. The long non-coding RNA growth arrest-specific 5 (GAS5) regulates THP-1 macrophage inflammation by sponging microRNAs. The purpose of this study was to investigate the regulatory mechanism of GAS5 in atherosclerosis development. GSE40231, GSE21545, and GSE28829 datasets from the Gene Expression Omnibus database were integrated after adjusting for batch effect. Differential analysis was performed on the integrated dataset and validated using the Genotype-Tissue Expression and GSE57691 datasets. Potential biological functions of GAS5 and annexin A2 (ANXA2) were identified using gene set enrichment analysis (GSEA). ssGSEA, CIBERSORTx, and ImmuCellAI algorithms were used to identify immune infiltration in plaque samples. GAS5 and ANXA2 expression levels in RAW264.7 cells treated with oxidized low-density lipoprotein (ox-LDL) were measured by qRT-PCR and Western blot. Small interfering and short hairpin RNA were used to silence GAS5 expression. Plasmids of ANXA2 were used to establish ANXA2 overexpression. Apoptosis and inflammatory markers in macrophages were detected by Western blot. Aortic samples from APOE-/- mice were collected to validate the expression of GAS5 and ANXA2. GAS5 expression was significantly increased during atherosclerosis. GAS5 expression was positively correlated with macrophage activation and ANXA2 expression in plaques. Furthermore, ANXA2 upregulation was also related to the activation of macrophage. GSEA indicated similar biological functions for GAS5 and ANXA2 in plaques. Moreover, in vitro experiments showed that both GAS5 and ANXA2 contributed to macrophage apoptosis and inflammation. Rescue assays revealed that the inflammatory effects of GAS5 on macrophages were ANXA2-dependent. In vivo experiments confirmed the highly expression of Gas5 and Anxa2 in the plaque group. We identified the atherogenic roles of GAS5 and ANXA2 in the inflammatory response of macrophages. The inflammatory response in ox-LDL-treated macrophages was found to be mediated by GAS5-ANXA2 regulation, opening new avenues for atherosclerosis therapy.

9.
Nano Lett ; 23(24): 11842-11849, 2023 Dec 27.
Artigo em Inglês | MEDLINE | ID: mdl-38071640

RESUMO

Aluminum-ion batteries have garnered an extensive amount of attention due to their superior electrochemical performance, low cost, and high safety. To address the limitation of battery performance, exploring new cathode materials and understanding the reaction mechanism for these batteries are of great significance. Among numerous candidates, multiple structures and valence states make manganese-based oxides the best choice for aqueous aluminum-ion batteries (AAIBs). In this work, a new cathode consists of γ-MnO2 with abundant oxygen vacancies. As a result, the electrode shows a high discharge capacity of 481.9 mAh g-1 at 0.2 A g-1 and a sustained reversible capacity of 128.6 mAh g-1 after 200 cycles at 0.4 A g-1. In particular, through density functional theory calculation and experimental comparison, the role of oxygen vacancies in accelerating the reaction kinetics of H+ has been verified. This study provides insights into the application of manganese dioxide materials in aqueous AAIBs.

10.
BMC Immunol ; 24(1): 55, 2023 12 21.
Artigo em Inglês | MEDLINE | ID: mdl-38129779

RESUMO

BACKGROUND: The interaction between the nervous system and the immune system can affect the outcome of a bacterial infection. Staphylococcus aureus skin infection is a common infectious disease, and elucidating the relationship between the nervous system and immune system may help to improve treatment strategies. RESULTS: In this study, we found that the local release of calcitonin gene-related peptide (CGRP) increased during S. aureus skin infection, and S. aureus could promote the release of CGRP from transient receptor potential cation channel subfamily V member 1 (TRPV1+) neurons in vitro. The existence of TRPV1+ neurons inhibited the recruitment of neutrophils to the infected region and regulated the polarization of macrophages toward M2 while inhibiting polarization toward M1. This reduces the level of inflammation in the infected area, which aggravates the local infection. Furthermore, this study demonstrates that TRPV1 may be a target for the treatment of S. aureus skin infections and that botulinum neurotoxin A (BoNT/A) and BIBN4096 may reverse the inhibited inflammatory effect of CGRP, making them potential therapeutics for the treatment of skin infection in S. aureus. CONCLUSIONS: In S. aureus skin infection, TRPV1+ neurons inhibit neutrophil recruitment and regulate macrophage polarization by releasing CGRP. BoNT/A and BIBN4096 may be potential therapeutic agents for S. aureus skin infection.


Assuntos
Peptídeo Relacionado com Gene de Calcitonina , Staphylococcus aureus , Peptídeo Relacionado com Gene de Calcitonina/farmacologia , Infiltração de Neutrófilos , Neurônios , Macrófagos
11.
Oncogene ; 42(44): 3260-3273, 2023 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-37740007

RESUMO

Pancreatic cancer cells undergo intricate metabolic reprogramming to sustain their survival and proliferation. p53 exhibits a dual role in tumor cell ferroptosis. However, the precise role and mechanisms underlying wild-type p53 activation in promoting ferroptosis in pancreatic cancer cells remain obscure. In this study, we applied bioinformatics tools and performed an analysis of clinical tissue sample databases and observed a significantly upregulated expression of solute carrier family 35 member F2 (SLC35F2) in pancreatic cancer tissues. Our clinical investigations indicated that elevated SLC35F expression was related to adverse survival outcomes. Through multi-omics analyses, we discerned that SLC35F2 influences the transcriptome and inhibits ferroptosis in pancreatic cancer cells. Moreover, our findings reveal the pivotal involvement of p53 in mediating SLC35F2-mediated ferroptosis, both in vitro and in vivo. SLC35F2 inhibits ferroptosis by facilitating TRIM59-mediated p53 degradation. Further mechanistic investigations demonstrated that SLC35F2 competitively interacts with the E3 ubiquitin ligase SYVN1 of TRIM59, thereby stabilizing TRIM59 expression and consequentially promoting p53 degradation. Utilizing protein 3D structure analysis and drug screening, we identified irinotecan hydrochloride and lapatinib ditosylate as compounds targeting SLC35F2, augmenting the antitumor effect of imidazole ketone erastin (IKE) in a wild-type p53 patient-derived xenograft (PDX) model. However, in the p53 mutant PDX model, irinotecan hydrochloride and lapatinib ditosylate did not alter the sensitivity of the tumor xenograft model to IKE-triggered ferroptosis. In summary, our work establishes a novel mechanism wherein the SLC35F2-SYVN1-TRIM59 axis critically regulates ferroptosis of pancreatic cancer cells by inhibiting endogenous p53. Thus, SLC35F2 emerges as a promising therapeutic target for treating pancreatic cancer.


Assuntos
Ferroptose , Neoplasias Pancreáticas , Humanos , Ferroptose/genética , Proteína Supressora de Tumor p53/genética , Proteína Supressora de Tumor p53/metabolismo , Irinotecano/farmacologia , Lapatinib/farmacologia , Neoplasias Pancreáticas/tratamento farmacológico , Neoplasias Pancreáticas/genética , Linhagem Celular Tumoral , Ubiquitina-Proteína Ligases/metabolismo , Proteínas com Motivo Tripartido/metabolismo , Peptídeos e Proteínas de Sinalização Intracelular/metabolismo , Proteínas de Membrana Transportadoras/metabolismo , Neoplasias Pancreáticas
12.
J Colloid Interface Sci ; 652(Pt B): 1438-1446, 2023 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-37659312

RESUMO

With its consistent thermal runaway temperature and superior capacity, aluminum ion batteries have emerged as a key area for battery development. At the moment, electrode material is the main focus of aluminum ion battery capacity enhancement. Selenide is anticipated to develop into a high-performance cathode for aluminum ion batteries, since it is a type of high energy density electrode material. However, because selenide is soluble in acid electrolytes, Al-Se batteries have low cycle performance and cannot keep up with the present demand for electronic gadgets. Here, homogeneous-structured precursors were created via a hydrothermal reaction, and MnSe2-MnSe heterojunction hollow spheres were created a step further via temperature control of the selenidation reaction. With 103.76 mAh/g of specific capacity remaining after 3000 cycles at 1.0 A/g, this novel heterojunction material exhibits astounding cycle stability. After additional investigation, it was shown that the MnSe2-MnSe heterojunction may prevent the dispersion of the active substances, significantly enhancing the cycle performance. The density of states (DOS) of electrode materials demonstrates the superior electronic conductivity of this heterojunction material. Meanwhile, it was computationally demonstrated that the MnSe2-MnSe heterojunction has a strong adsorption energy for AlCl4-, thus accelerating the reaction kinetics. In summary, the performance of selenides has been improved by this novel heterojunction material, which also makes for a superior cathode material.

13.
J Colloid Interface Sci ; 651: 296-303, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37542904

RESUMO

Due to their high reactivity and theoretical capacity, chalcogen elements have been favored and applied in many battery studies. However, the high surface charge density and high solubility of these elements as electrode materials have hindered their deeper exploration due to the shuttle effect. In this article, organic structural triphenylphosphine is used as a molecular main chain structure, and chalcogen elements O, S, and Se are introduced to combine with P as active sites. This approach not only takes advantage of the beneficial effects of the aromatic ring on the physical and chemical properties of the chalcogen element but also allows for the optimization of its advantages. By utilizing Triphenylphosphine selenide (TP-Se) as the cathode material in aluminum-ion batteries(AIBs), a high-performance Al-organic battery was fabricated, which exhibited a high initial capacity of 180.6 mAh g-1 and stable cycling for up to 1000 cycles. Based on density functional theory (DFT) calculations, TP-Se exhibits a smaller energy gap, which renders it favorable for chemical reactions. Moreover, the calculated results suggest that TP-Se tends to undergo redox reactions with AlCl2+. The molecular structure of triphenylphosphine and its combination with Se offers an enticing pathway for designing cathode materials in aluminum-organic batteries.

14.
Small Methods ; 7(10): e2300663, 2023 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-37462249

RESUMO

Aluminum ion batteries (AIBs) are widely regarded as the most potential large-scale metal ion battery because of its high safety and environment-friendly characteristics. To solve the problem of weak electrical conductivity of organic materials, different structures of cyano organic molecules with electrophilic properties are selected as the cathode materials of aluminum batteries. Through experimental characterization and density functional theory theoretical calculation, Phthalonitrile is the best cathode material among the five organic molecules and proved that the C≡N group is the active site for insertion/extraction of AlCl2 + ions. The first cycle-specific capacity of the assembled flexible package battery is as high as 191.92 mAh g-1 , the discharge-specific capacity is 112.67 mAh g-1 after 1000 cycles, and the coulombic efficiency is ≈97%. At the same time, the influences of different molecular structures and functional groups on the battery are also proved. These research results lay a foundation for selecting safe and stable organic aluminum batteries and provide a new reference for developing high-performance AIBs.

15.
J Adv Res ; 2023 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-37328057

RESUMO

INTRODUCTION: The efficacy of anti-vascular endothelial growth factor (VEGF) therapy is limited. However, the key factors involved in limiting the efficacy of anti-VEGF therapy and the underlying mechanisms remain unclear. OBJECTIVES: To investigate the effects and mechanisms of human leukocyte antigen F locus-adjacent transcript 10 (FAT10), a ubiquitin-like protein, in limiting the efficacy of anti-VEGF therapy in hepatocellular carcinoma (HCC) cells. METHODS: FAT10 was knocked out in HCC cells using the clustered regularly interspaced short palindromic repeats (CRISPR)-CRISPR-associated protein 9 technology. Bevacizumab (BV), an anti-VEGF monoclonal antibody, was used to evaluate the efficacy of anti-VEGF therapy in vivo. Mechanisms of FAT10 action were assessed by RNA sequencing, glutathione S-transferase pulldown assays and in vivo ubiquitination assays. RESULTS: FAT10 accelerated VEGF-independent angiogenesis in HCC cells which limited BV efficacy and BV-aggravated hypoxia and inflammation promoted FAT10 expression. FAT10 overexpression increased levels of proteins involved in several signaling pathways in HCC cells, resulting in upregulation of VEGF and multiple non-VEGF proangiogenic factors. Upregulation of multiple FAT10-mediated non-VEGF signals compensated for the inhibition of VEGF signaling by BV, enhancing VEGF-independent angiogenesis and promoting HCC growth. CONCLUSIONS: Our preclinical findings identify FAT10 in HCC cells as a key factor limiting the efficacy of anti-VEGF therapy and elucidate its underlying mechanisms. This study provides new mechanistic insights into the development of antiangiogenic therapies.

16.
Diagn Microbiol Infect Dis ; 106(4): 115929, 2023 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-37244008

RESUMO

OBJECTIVES: We developed a rapid and highly sensitive method for quantitatively analyzing neutrophil gelatinase-associated lipocalin (NGAL) levels in synovial fluid and assessed its diagnostic performance for prosthetic joint infection (PJI). DESIGNS OR METHODS: We conducted a preliminary analysis of the performance of the developed test strips utilizing clinical specimens to verify their sensitivity, precision, specificity and accuracy. RESULTS: The standard curve of the test strip NGAL values was linear. The detection limit and the limit of quantification (LOQ) were 12.37 and 29.49 ng/mL, respectively, and the approximate detection range was 12.37 to 1250 ng/mL. The interbatch and intrabatch precision of the test strips were each less than 10%, and the cross-reaction rate with competitors' systems was less than 1%. CONCLUSIONS: The test strips can be used for the determination of synovial fluid NGAL levels; the test strips are highly sensitive, precise, specific, and stable. Furthermore, they demonstrated good performance in clinical verification.


Assuntos
Testes Imunológicos , Líquido Sinovial , Humanos , Lipocalina-2/análise , Biomarcadores/análise
17.
Nanomaterials (Basel) ; 13(9)2023 Apr 27.
Artigo em Inglês | MEDLINE | ID: mdl-37177046

RESUMO

Recent developments in ultrafine bubble generation have opened up new possibilities for applications in various fields. Herein, we investigated how substances in water affect the size distribution and stability of microbubbles generated by a common nanobubble generator. By combining light scattering techniques with optical microscopy and high-speed imaging, we were able to track the evolution of microbubbles over time during and after bubble generation. Our results showed that air injection generated a higher number of microbubbles (<10 µm) than CO2 injection. Increasing detergent concentration led to a rapid increase in the number of microbubbles generated by both air and CO2 injection and the intensity signal detected by dynamic light scattering (DLS) slightly increased. This suggested that surface-active molecules may inhibit the growth and coalescence of bubbles. In contrast, we found that salts (NaCl and Na2CO3) in water did not significantly affect the number or size distribution of bubbles. Interestingly, the presence of oil in water increased the intensity signal and we observed that the bubbles were coated with an oil layer. This may contribute to the stability of bubbles. Overall, our study sheds light on the effects of common impurities on bubble generation and provides insights for analyzing dispersed bubbles in bulk.

18.
J Ind Microbiol Biotechnol ; 50(1)2023 Feb 17.
Artigo em Inglês | MEDLINE | ID: mdl-37055369

RESUMO

ß-Carotene is a kind of high-value tetraterpene compound, which shows various applications in medical, agricultural, and industrial areas owing to its antioxidant, antitumor, and anti-inflammatory activities. In this study, Yarrowia lipolytica was successfully metabolically modified through the construction and optimization of ß-carotene biosynthetic pathway for ß-carotene production. The ß-carotene titer in the engineered strain Yli-C with the introduction of the carotenogenesis genes crtI, crtE, and crtYB can reach 34.5 mg/L. With the overexpression of key gene in the mevalonate pathway and the enhanced expression of the fatty acid synthesis pathway, the ß-carotene titer of the engineered strain Yli-CAH reached 87 mg/L, which was 152% higher than that of the strain Yli-C. Through the further expression of the rate-limiting enzyme tHMGR and the copy number of ß-carotene synthesis related genes, the ß-carotene production of Yli-C2AH2 strain reached 117.5 mg/L. The final strain Yli-C2AH2 produced 2.7 g/L ß-carotene titer by fed-batch fermentation in a 5.0-L fermenter. This research will greatly speed up the process of developing microbial cell factories for the commercial production of ß-carotene. ONE-SENTENCE SUMMARY: In this study, the ß-carotene synthesis pathway in engineered Yarrowia lipolytica was enhanced, and the fermentation conditions were optimized for high ß-carotene production.


Assuntos
Yarrowia , Fermentação , Yarrowia/genética , Yarrowia/metabolismo , beta Caroteno , Engenharia Metabólica , Reatores Biológicos
19.
J Clin Med ; 12(5)2023 Feb 24.
Artigo em Inglês | MEDLINE | ID: mdl-36902625

RESUMO

OBJECTIVES: The purpose of this study was to explore the clinical value of metagenomic next-generation sequencing (mNGS) in the diagnosis of polymicrobial periprosthetic joint infection (PJI). METHODS: Patients with complete data who underwent surgery at our hospital between July 2017 and January 2021 for suspected periprosthetic joint infection (PJI), according to the 2018 ICE diagnostic criteria, were enrolled, and all patients underwent microbial culture and mNGS detection, which were performed on the BGISEQ-500 platform. Microbial cultures were performed on two samples of synovial fluid, six samples of tissue, and two samples of prosthetic sonicate fluid for each patient. The mNGS was performed on 10 tissues, 64 synovial fluid samples, and 17 prosthetic sonicate fluid samples. The results of mNGS testing were based on the interpretation of mNGS results in the previous literature and the assertions of microbiologists and orthopedic surgeons. The diagnostic efficacy of mNGS in polymicrobial PJI was assessed by comparing the results of conventional microbial cultures and mNGS. RESULTS: A total of 91 patients were finally enrolled in this study. The sensitivity, specificity, and accuracy of conventional culture for the diagnosis of PJI were 71.0%, 95.4%, and 76.9%, respectively. The sensitivity, specificity, and accuracy of mNGS for the diagnosis of PJI were 91.3%, 86.3%, and 90.1%, respectively. The sensitivity, specificity, and accuracy of conventional culture for the diagnosis of polymicrobial PJI were 57.1%, 100%, and 91.3%, respectively. mNGS had a sensitivity, specificity, and accuracy of 85.7%, 60.0%, and 65.2%, respectively, for the diagnosis of polymicrobial PJI. CONCLUSIONS: mNGS can improve the diagnosis efficiency of polymicrobial PJI, and the combination of culture and mNGS is a promising method to diagnose polymicrobial PJI.

20.
Am J Pathol ; 193(3): 259-274, 2023 03.
Artigo em Inglês | MEDLINE | ID: mdl-36521562

RESUMO

Idiopathic pulmonary fibrosis (IPF) is a chronic human disease with persistent destruction of lung parenchyma. Transforming growth factor-ß1 (TGF-ß1) signaling plays a pivotal role in the initiation and pathogenesis of IPF. As shown herein, TGF-ß1 signaling down-regulated not only peroxisome biogenesis but also the metabolism of these organelles in human IPF fibroblasts. In vitro cell culture observations in human fibroblasts and human lung tissue indicated that peroxisomal biogenesis and metabolic proteins were significantly down-regulated in the lung of 1-month-old transgenic mice expressing a constitutively active TGF-ß type I receptor kinase (ALK5). The peroxisome biogenesis protein peroxisomal membrane protein Pex13p (PEX13p) as well as the peroxisomal lipid metabolic enzyme peroxisomal acyl-coenzyme A oxidase 1 (ACOX1) and antioxidative enzyme catalase were highly up-regulated in TGF-ß type II receptor and Smad3 knockout mice. This study reports a novel mechanism of peroxisome biogenesis and metabolic regulation via TGF-ß1-Smad signaling: interaction of the Smad3 transcription factor with the PEX13 gene in chromatin immunoprecipitation-on-chip assay as well as in a bleomycin-induced pulmonary fibrosis model applied to TGF-ß type II receptor knockout mice. Taken together, data from this study suggest that TGF-ß1 participates in regulation of peroxisomal biogenesis and metabolism via Smad-dependent signaling, opening up novel strategies for the development of therapeutic approaches to inhibit progression of pulmonary fibrosis patients with IPF.


Assuntos
Fibrose Pulmonar Idiopática , Fator de Crescimento Transformador beta1 , Camundongos , Animais , Humanos , Lactente , Fator de Crescimento Transformador beta1/metabolismo , Camundongos Transgênicos , Receptor do Fator de Crescimento Transformador beta Tipo II/genética , Receptor do Fator de Crescimento Transformador beta Tipo II/metabolismo , Fibrose Pulmonar Idiopática/induzido quimicamente , Fibrose Pulmonar Idiopática/genética , Fibrose Pulmonar Idiopática/metabolismo , Pulmão/patologia , Bleomicina/efeitos adversos , Fibroblastos/metabolismo , Camundongos Knockout
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA